Building bridges between geometry and algebra

Petra Schwer
OVGU Magdeburg

Hamburg, January 18th 2022

Coxeter groups

Coxeter groups are abstract versions of reflection groups that admit a finite presentations as

$$
W=\left\langle s_{i}, s_{j} \in S \mid s_{i}^{2},\left(s_{i} s_{j}\right)^{m_{i, j}}\right\rangle, \text { where } 2 \leq m_{i, j} \leq \infty
$$

$=\infty$ means ho relation

W_{1}

W_{2}

W_{3}
$W_{1}=\left\langle s_{1}, s_{2}, s_{3} \mid s_{i}^{2},\left(s_{1} s_{2}\right)^{2},\left(s_{2} s_{3}\right)^{5},\left(s_{3} s_{1}\right)^{3}\right\rangle$
$W_{2}=\left\langle s_{1}, s_{2}, s_{3} \mid s_{i}^{2},\left(s_{1} s_{2}\right)^{3},\left(s_{2} s_{3}\right)^{3},\left(s_{3} s_{1}\right)^{3}\right\rangle$
$W_{3}=\left\langle s_{1}, s_{2}, s_{3} \mid s_{i}^{2},\left(s_{1} s_{2}\right)^{2},\left(s_{2} s_{3}\right)^{3},\left(s_{3} s_{1}\right)^{7}\right\rangle \mid$

Spherical example

Finite Coxeter groups act on simplicial spheres.

$$
\begin{gathered}
\left\langle s_{1} t \mid \delta_{1}^{2}, t^{2},(s t)^{3}\right\rangle \\
s t s=t s t
\end{gathered}
$$

Coxeterkomplex of $W_{0} \cong S_{3}$

Spherical example

Finite Coxeter groups act on simplicial spheres.
The following properties hold:

Coxeterkomplex of $W_{0} \cong S_{3}$

- maximal simplices correspond (1:1) to elements of W_{0}
- smaller simplices can be colored using (subsets of the) generators
- there exists a unique longest element in W_{0} $w_{0}=s t s=t s t$.

$$
W_{0}=\left\langle s, t \mid s^{2}, t^{2},(s t)^{3}\right\rangle
$$

Affine example

Affine Coxeter groups act on simplicial (tiled) \mathbb{R}^{n}.
\mathbb{R}^{2}

Coxeterkomplex of $W_{0} \cong S_{3}$

Affine example

Affine Coxeter groups act on simplicial (tiled) \mathbb{R}^{n}.
The following properties hold:
$t=$ blue

Coxeterkomplex of $W_{0} \cong S_{3}$

- maximal simplices correspond (1:1) to elements of W
- smaller simplices can be colored using (subsets of the) generators
- each element $w \in W$ has a unique normal form $w=t_{\lambda} u$ and $W=W_{0} \ltimes T$.

$$
\left.W_{0}=\langle r, s, t| r^{2}, s^{2}, t^{2},(x y)^{3} \text { for } x \neq y \in\{r, s, t\}\right\rangle
$$

Affine example

Every infinite Coxeter group acts on a simplicial (tiled) \mathbb{R}^{n}. The following properties hold:

Coxeterkomplex of $W_{0} \cong S_{3}$

- maximal simplices correspond (1:1) to elements of W
- smaller simplices can be colored using (subsets of the) generators
- each element $w \in W$ has a unique normal form $w=t_{\lambda} u$ and $W=W_{0} \ltimes T$.

$$
\left.W_{0}=\langle r, s, t| r^{2}, s^{2}, t^{2},(x y)^{3} \text { for } x \neq y \in\{r, s, t\}\right\rangle
$$

Outline of the talk

- An easy to state (but not fully solved) problem
- Beautiful combinatorics and geometry
- Why one should care

Outline of the talk

- An easy to state (but not fully solved) problem Computing reflection length
- Beautiful combinatorics and geometry Folded galleries and their shadows
- Why one should care Computing dimensions of ADL-varieties

Computing reflection length

Reflection length $l_{R}(w)$
The set $R=\bigcup_{w \in W} w S w^{-1}$ of all reflections in a Coxeter group is a natural generating set.

Question
Given a fixed $w \in W$ what is the smallest number $k \in \mathbb{N}$ such that w is the product of k reflections?

3 Reflection 2 generators

$$
\{2 \text { gen }\} \cdot C_{\{ }\{00 \text {-many refl } .\}
$$

Reflection length $l_{R}(w)$
The set $R=\bigcup_{w \in W} w S w^{-1}$ of all reflections in a Coxeter group is a natural generating set.

Question
Given a fixed $w \in W$ what is the smallest number $k \in \mathbb{N}$ such that w is the product of k reflections?

Reflection length $l_{R}(w)$

Question
Given $w \in W$ what is the smallest $k \in \mathbb{N}$ such that $l_{R}(w)=k$?
W finite/affine

- l_{R} is uniformly bounded
- explicit formulas and characterizations.
(Carter '72,
Lewis-McCammond-Petersen-Schwer '18)

Reflection length $l_{R}(w)$

Question
Given $w \in W$ what is the smallest $k \in \mathbb{N}$ such that $l_{R}(w)=k$?
W hyperbolic:

- reflection length is unbounded
- more structure is known for universal Coxeter groups.
(Duszenko '12, Drake-Peters/Lotz '21).

Folded galleries and their shadows

Galleries in Coxeter Complexes

Definition

A gallery γ in a Coxeter complex is a sequence of maximal simplices c_{i} such that subsequent ones share a codimension one face p_{i}. We write $\gamma=\left(c_{1}, p_{1}, c_{2}, p_{2}, \ldots, p_{n-1}, c_{n}\right)$. We say a gallery is folded at i if $c_{i}=c_{i+1}$.

Galleries in Coxeter Complexes

Definition

A gallery γ in a Coxeter complex is a sequence of maximal simplices c_{i} such that subsequent ones share a codimension one face p_{i}. We write $\gamma=\left(c_{1}, p_{1}, c_{2}, p_{2}, \ldots, p_{n-1}, c_{n}\right)$. We say a gallery is folded at i if $c_{i}=c_{i+1}$.

- The p_{i} 's are colored by generators s_{i} and determine a word, calles the type of γ, representing an element in W. We call this word the type of γ.
- Any word determines a unique (unfolded) gallery starting in the identity simplex $c_{1}=1$.
- Folded galleries starting in 1 correspond to 'decorated' words.

Positive folds
orientations and positively folded galleries

Folded galleries arise naturally via retractions in buildings.

Affine buildings in dimension one

Trees without leafs are exactly the 1-dim. affine buildings.

affine Bruhat-Tits building for $\mathrm{SL}_{2}\left(\mathbb{Q}_{2}\right)$ with 2-adic valuation

$$
\mathrm{SL}_{2}\left(\mathbb{Q}_{2}\right)=U T K
$$

- $U=\left\{\left(\begin{array}{cc}1 & 0 \\ \star & 1\end{array}\right)\right\} \widehat{=} \operatorname{Stab}(\infty)$
- $T=\left\{\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)\right\} \cong \mathbb{Z} \hat{=}$ horizontal translations

- $K=\left\{\left.\left(\begin{array}{cc}c & s \\ -s & c\end{array}\right) \right\rvert\, c^{2}+s^{2}=1\right\}=G(\mathcal{O}) \hat{=} \operatorname{Stab}(0)$

Retractions

Retraction $r: X \rightarrow A$ based at a maximal simplex.
For all $t \in T$ one has $r^{-1}\left(W_{0} . t\right)=K . t$ and $r^{-1}(t)=I . t$, where $I:=\operatorname{Stab}(\mathbb{1})$.

Retractions

Retraction $r: X \rightarrow A$ based at a maximal simplex.
For all $t \in T$ one has $r^{-1}\left(W_{0} . t\right)=K . t$ and
$r^{-1}(t)=I . t$, where $I:=\operatorname{Stab}(\mathbb{1})$.

Retraction $\rho: X \rightarrow A$ based at a direction at infinity.
For all $t \in T$ one has $\rho^{-1}(t)=U$.t.

Shadows of elements in W

Definition
The shadow $\mathrm{Sh}_{\phi}(w)$ of $w \in W$ with respect to an orientation ϕ is the set of all ends of positively folded galleries of type w.

Shadows of elements in W

Definition
The hadow $\operatorname{Sh}_{\phi}(w)$ of $w \in W$ with respect to an orientation ϕ is the set of all ends of positively folded galleries of type w.

Shadows of elements in W

Definition
The shadow $\operatorname{Sh}_{\phi}(w)$ of $w \in W$ with respect to an orientation ϕ is the set of all ends of positively folded galleries of type w.

Buruatardes

One has:

- [GS18] Recursive descriptions of alcove shadows $\mathbf{2 0 5}$
- [MNST19] Recursive description of shadows with respect to general chimneys + geometric interpretations in terms of retractions in a building.

Computing dimensions of affine Deligne-Lustig varieties

Why one should care

Shadows and folded galleries explain many algebraic situations.
For example

- [Gaussent-Littelmann] Study highest weight representations of complex semi-simple algebraic groups using LS-galleries.
- [Ehrig] Description of MV polytopes via LS-galleries and retractions.
- [Schwer=Hitzelberger] Schur-Horn type theorems for algebraic groups over non-archimedian local fields with valuation.
- [Milićević-Schwer-Thomas] Proof of nonemptiness and dimensions of (certain) ADLVs.

Folded galleries and ADLV.
搃

Red alcoves are ends of positively folded galleries of fixed type x. Grey alcoves y are non-empty $\operatorname{ADLV} X_{y}\left(t^{\rho}\right)$.

Picture on the right: Görtz-Haines-Kottwitz-Reuman, arXiv:0504443

Affine flag variety

- \mathbb{F}_{q} a finite field of order $q=p^{m}, \sigma$ its Frobenius
- $F=k((t))$ where $k=\overline{\mathbb{F}}_{q}$ (non-archimedian local field)
- $\mathcal{O}=k[[t]]$ (ring of integers)
- project $\mathcal{O} \rightarrow k$ by setting $t=0$, detects constant term a_{0}

Affine flag variety

- \mathbb{F}_{q} a finite field of order $q=p^{m}, \sigma$ its Frobenius
- $F=k((t))$ where $k=\overline{\mathbb{F}}_{q}$ (non-archimedian local field)
- $\mathcal{O}=k[[t]]$ (ring of integers)
- project $\mathcal{O} \rightarrow k$ by setting $t=0$, detects constant term a_{0}

The affine flag variety is the quotient $G(F) / I$, where

- G is a connected reductive group over \mathbb{F}_{q},
- $B \subset G$ a Borel subgroup containing a maximal torus T and
- I denotes the Iwahori subgroup of $G(F)$ that is the inverse image of $B(k)$ under the projection $G(\mathcal{O}) \rightarrow G(k)$.
The points of the affine flag variety correspond to the maximal simplices in a Bruhat-Tits building.

Definition of ADLVs

G connected reductive group over \mathbb{F}_{q}
I Iwahori subgroup
W affine Weyl group
$k=\overline{\mathbb{F}}_{q}, F=k((t)), \sigma$ the Frobenius map
$G(F)=\bigsqcup_{x \in W} I x I$ Iwahori-Bruhat decomposition

Definition
The affine Deligne-Lusztig variety $X_{x}(b) \subseteq \mathcal{G}(F) / I$ is given by

$$
X_{x}(b)=\left\{g \in G(F) \mid g^{-1} b \sigma(g) \in I x I\right\} / I
$$

where $x \in W, b \in G(F)$.

Main Questions

Nonemptiness: For which $(x, b) \in W \times W$ is $K_{x}(b) \neq \emptyset$?
Dimension: What is the dimension of $X_{x}(b)$?

In case b is basic these questions are solved:

- Görtz, Haines, He, Kottwitz, Milićević (nèe Beazley), Reuman, Viehmann, ...
- Görtz, He and Nie (2012): nonemptiness pattern for all x and all basic b
- He (Annals 2014):
dimension formula for all x and basic b

The basic case

An element $b \in G(F)$ is basic if it is σ-conjugate to an element of length 0 in the extended affine Weyl group.

- All basic b in W are pairwise σ-conjugate.
- Dominant translations (pink) are not basic and pairwise not σ-conjugate.

basic elements (blue); translations in the dominant Weyl chamber (pink)

A new geometric approach

In the following let $b=t^{\lambda}$ be a translation in W.
We proceed as follows:
(1) $X_{x}(b) \neq \emptyset \Longleftrightarrow$ there exists a positively folded gallery from 1 to b of type x.
(2) $\operatorname{dim}\left(X_{x}(b)\right)$ can be computed via positive folds + positive crossings of these galleries
(3) Construct and manipulate such galleries using root operators, combinatorics in Coxeter complexes and explicit transformations.
[MST19,20], [MNST20]

Manipulations using root operators

Applying available root operators to explicitly constructed galleries we obtain: $X_{x}(b) \neq \emptyset$ for most $b=t^{\mu}$ between 1 and x.

Theorem (Milićević-S-Thomas, 2019)

Let $b=t^{\mu}$ be a pure translation and let $x=t^{\lambda} w \in W$.
Assume that b is in the convex hull of x and the base alcove + two technical conditions on μ and λ. Then

$$
X_{x}(1) \neq \emptyset \Longrightarrow X_{x}(b) \neq \emptyset
$$

and if $w=w_{0}$ then $X_{x}(1) \neq \emptyset$ and $X_{x}(b) \neq \emptyset$.
If both varieties are nonempty then

$$
\operatorname{dim} X_{x}(b)=\operatorname{dim} X_{x}(1)-\left\langle\rho, \mu^{+}\right\rangle
$$

Precise assumptions:

- $t^{\lambda} w_{0}$ and $t^{-\mu} x$ are in the shrunken dominant Weyl chamber $\widetilde{\mathcal{C}}_{f}$
- b is in the convex hull of x and the base alcove
- μ lies in the negative cone based at $\lambda-2 \rho$.

Thank you!

petra.schwer@ovgu.de

