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Coxeter groups
Coxeter groups are abstract versions of reflection groups that
admit a finite presentations as

W = 〈si, sj ∈ S | s2i , (sisj)mi,j 〉, where 2 ≤ mi,j ≤ ∞

W1 W2 W3

W1 = 〈s1, s2, s3 | s2i , (s1s2)2, (s2s3)5, (s3s1)3〉
W2 = 〈s1, s2, s3 | s2i , (s1s2)3, (s2s3)3, (s3s1)3〉
W3 = 〈s1, s2, s3 | s2i , (s1s2)2, (s2s3)3, (s3s1)7〉

Source: left/right Wikipedia.org
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Spherical example

Finite Coxeter groups act on simplicial spheres.

The following properties hold:

1

st

st ts

w0

Coxeterkomplex of W0 ∼= S3

I maximal simplices
correspond (1:1) to
elements of W0

I smaller simplices can be
colored using (subsets of
the) generators

I there exists a unique
longest element in W0

w0 = sts = tst.

W0 = 〈s, t | s2, t2, (st)3〉
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Affine example

Affine Coxeter groups act on simplicial (tiled) Rn.

The following properties hold:

1

r

t s

Coxeterkomplex of W0 ∼= S3

I maximal simplices
correspond (1:1) to
elements of W

I smaller simplices can be
colored using (subsets of
the) generators

I each element w ∈W has a
unique normal form
w = tλu and W = W0 n T .

W0 = 〈r, s, t | r2, s2, t2, (xy)3 for x 6= y ∈ {r, s, t}〉
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Affine example

Every infinite Coxeter group acts on a simplicial (tiled) Rn.
The following properties hold:
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Coxeterkomplex of W0 ∼= S3

I maximal simplices
correspond (1:1) to
elements of W

I smaller simplices can be
colored using (subsets of
the) generators

I each element w ∈W has a
unique normal form
w = tλu and W = W0 n T .
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I An easy to state (but not fully solved) problem

Computing reflection length

I Beautiful combinatorics and geometry

Folded galleries and their shadows

I Why one should care

Computing dimensions of ADL-varieties
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Computing reflection length



Reflection length lR(w)

The set R =
⋃
w∈W wSw−1 of all reflections in a Coxeter group

is a natural generating set.

Question

Given a fixed w ∈W what is the smallest number k ∈ N such
that w is the product of k reflections?
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Reflection length lR(w)

Question

Given w ∈W what is the smallest k ∈ N such that lR(w) = k?

W finite/affine

I lR is uniformly bounded

I explicit formulas and
characterizations.

(Carter ’72,

Lewis-McCammond-Petersen-Schwer ’18)



Reflection length lR(w)

Question

Given w ∈W what is the smallest k ∈ N such that lR(w) = k?

W hyperbolic:

I reflection length is
unbounded

I more structure is known
for universal Coxeter
groups.

(Duszenko ’12, Drake-Peters/Lotz ’21).



Folded galleries and their shadows



Galleries in Coxeter Complexes

Definition
A gallery γ in a Coxeter complex is a sequence of maximal
simplices ci such that subsequent ones share a codimension one
face pi. We write γ = (c1, p1, c2, p2, . . . , pn−1, cn). We say a
gallery is folded at i if ci = ci+1.

I The pi’s are colored by generators si and determine a word,
calles the type of γ, representing an element in W . We call
this word the type of γ.

I Any word determines a unique (unfolded) gallery starting
in the identity simplex c1 = 1.

I Folded galleries starting in 1 correspond to ’decorated’
words.
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Positive folds

orientations and positively folded galleries

Folded galleries arise naturally via retractions in buildings.



Affine buildings in dimension one

Trees without leafs are exactly the 1-dim. affine buildings.

∞ 0

affine Bruhat-Tits building for SL2(Q2) with 2-adic valuation

SL2(Q2) = UTK

I U = {( 1 0
? 1 )} =̂ Stab(∞)

I T = {
(
λ 0
0 λ−1

)
} ∼= Z =̂ horizontal translations

I K = {( c s
−s c ) | c2 + s2 = 1} = G(O) =̂ Stab(0)



Retractions

Retraction r : X → A based at a maximal simplex.
For all t ∈ T one has r−1(W0.t) = K.t and
r−1(t) = I.t, where I := Stab(1).

�ŝůĚĞƌ
�ŽŶŶĞƌƐƚĂŐ͕�ϮϬ͘�:ƵŶŝ�ϮϬϭϵ Ϯϭ͗Ϯϵ

Retraction ρ : X → A based at a direction at infinity.
For all t ∈ T one has ρ−1(t) = U.t.

�ŝůĚĞƌ
�ŽŶŶĞƌƐƚĂŐ͕�ϮϬ͘�:ƵŶŝ�ϮϬϭϵ Ϯϭ͗Ϯϵ
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Shadows of elements in W

Definition
The shadow Shφ(w) of w ∈W with respect to an orientation φ
is the set of all ends of positively folded galleries of type w.

One has:

I [GS18] Recursive descriptions of alcove shadows

I [MNST19] Recursive description of shadows with respect to
general chimneys + geometric interpretations in terms of
retractions in a building.
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Computing dimensions of affine Deligne-Lustig
varieties



Why one should care

Shadows and folded galleries explain many algebraic situations.
For example

I [Gaussent-Littelmann] Study highest weight representations
of complex semi-simple algebraic groups using LS–galleries.

I [Ehrig] Description of MV polytopes via LS–galleries and
retractions.

I [Schwer=Hitzelberger] Schur-Horn type theorems for
algebraic groups over non-archimedian local fields with
valuation.

I [Milićević–Schwer–Thomas ] Proof of nonemptiness and
dimensions of (certain) ADLVs.



Folded galleries and ADLV.

x

50 U. GÖRTZ, T. J. HAINES, R. E. KOTTWITZ, AND D. C. REUMAN

Figure 11. Non-empty affine Deligne-Lusztig varieties and their
dimensions, type A2, b = ǫ(1,0,−1)
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Red alcoves are ends of positively folded galleries of fixed type x.

Grey alcoves y are non-empty ADLV Xy(tρ).

Picture on the right: Görtz–Haines–Kottwitz–Reuman, arXiv:0504443



Affine flag variety

I Fq a finite field of order q = pm, σ its Frobenius

I F = k((t)) where k = Fq (non-archimedian local field)

I O = k[[t]] (ring of integers)

I project O → k by setting t = 0, detects constant term a0

The affine flag variety is the quotient G(F )/I, where

I G is a connected reductive group over Fq,

I B ⊂ G a Borel subgroup containing a maximal torus T and

I I denotes the Iwahori subgroup of G(F ) that is the inverse
image of B(k) under the projection G(O)→ G(k).

The points of the affine flag variety correspond to the maximal
simplices in a Bruhat-Tits building.
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Definition of ADLVs

G connected reductive group over Fq
I Iwahori subgroup
W affine Weyl group
k = Fq, F = k((t)), σ the Frobenius map
G(F ) =

⊔
x∈W IxI Iwahori-Bruhat decomposition

Definition
The affine Deligne–Lusztig variety Xx(b) ⊆ G(F )/I is given by

Xx(b) = {g ∈ G(F ) | g−1bσ(g) ∈ IxI}/I,

where x ∈W, b ∈ G(F ).



Main Questions

Nonemptiness: For which (x, b) ∈W ×W is Xx(b) 6= ∅ ?

Dimension: What is the dimension of Xx(b) ?

In case b is basic these questions are solved:

I Görtz, Haines, He, Kottwitz, Milićević (nèe Beazley),
Reuman, Viehmann, ...

I Görtz, He and Nie (2012):
nonemptiness pattern for all x and all basic b

I He (Annals 2014):
dimension formula for all x and basic b



The basic case

An element b ∈ G(F ) is basic if it is σ-conjugate to an element
of length 0 in the extended affine Weyl group.

I All basic b in W are
pairwise σ-conjugate.

I Dominant translations
(pink) are not basic and
pairwise not σ-conjugate.

basic elements (blue); translations in the

dominant Weyl chamber (pink)



A new geometric approach

In the following let b = tλ be a translation in W .
We proceed as follows:

(1) Xx(b) 6= ∅ ⇐⇒ there exists a positively folded gallery from
1 to b of type x.

(2) dim(Xx(b)) can be computed via positive folds + positive
crossings of these galleries

(3) Construct and manipulate such galleries using root
operators, combinatorics in Coxeter complexes and explicit
transformations.

[MST19,20], [MNST20]



Manipulations using root operators

Applying available root operators to explicitly constructed
galleries we obtain: Xx(b) 6= ∅ for most b = tµ between 1 and x.



Theorem (Milićević–S–Thomas, 2019)

Let b = tµ be a pure translation and let x = tλw ∈W .
Assume that b is in the convex hull of x and the base alcove
+ two technical conditions on µ and λ. Then

Xx(1) 6= ∅ =⇒ Xx(b) 6= ∅

and if w = w0 then Xx(1) 6= ∅ and Xx(b) 6= ∅.
If both varieties are nonempty then

dimXx(b) = dimXx(1)− 〈ρ, µ+〉.

Precise assumptions:

I tλw0 and t−µx are in the shrunken dominant Weyl chamber C̃f
I b is in the convex hull of x and the base alcove

I µ lies in the negative cone based at λ− 2ρ.
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